

Computer Architecture

- Computer Architecture is the theory behind the operational design of a computer system
- This is a term which is applied to a vast array of computer disciplines ranging from low level instruction set and logic design, to higher level aspects of a computer's design such as the memory subsystem and bus structure
- In this lecture we will focus on the latter definition of the term

Topics Discussed

- Memory Hierarchy
- Memory Performance
- Amdahl's Law and the Locality of Reference
- Cache Organization and Operation
- Random Access Memory (DRAM, SRAM)
- Non Volatile Memory (Flash)
- Bus Interfaces
 - · How to connect the processor to memory & I/O

Memory Hiera	rchy					
• A simple axiom of hardware design: <i>smaller is faster</i>						
	Memory Hierarchy	Access Times				
California) California) California)	Register	1 cy.				
BARE Race Permit	Cache	1-2 cy.				
AND A CONTRACT OF A CONTRACT O	Main Memory	10-15 cy.				
Tasters Hauss Perint Strengt Meine Contract	Disk	1000+ cy.				

-			

Memory Performance

- Performance is measured either in terms of throughput or response time
- The goal of memory design is to increase memory bandwidth and decrease access time latencies
- We take advantage of three principles of computing in order to achieve this goal:
 - Make the common case faster

- Principle of Locality
- Smaller is Faster

Make the Common Case Faster

- Always want to improve the frequent event as opposed to the infrequent event
- Amdahl's Law quantifies this process:
 The performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time the faster mode can be used
- Amdahl's Law essentially guides you to spend your resources on an area where the time is most spent

Cache Organization

• Cache is organized not in bytes, but as blocks of cache lines, with each line containing some number of bytes (16-64)

- Unlike normal memory, cache lines do not have fixed addresses, which enables the cache system to populate each cache line with a unique (non-contiguous) address
- There are three methods for filling a cache line
 - · Fully Associative The most flexible
 - Direct Mapped The most basic
 - Set Associative A combination of the two

Fully Associative

- In a fully associative cache subsystem, the cache controller can place a block of bytes in any of the available cache lines
- Though this makes the system greatly flexible, the added circuitry to perform this function increases the cost, and worst, decreases the performance of the cache!
- Most of today's cache systems are not fully associative for this reason

Direct Mapped

- In contrast to the fully associative cache is the direct mapped cache system, also called the *one-way set associative*
- In this system, a block of main memory is always loaded into the *same* cache line, evicting the previous cache entry
- This is not an ideal solution either because in spite of its simplicity, it doesn't make an efficient use of the cache
- For this reason, not many systems are built as direct mapped caches either

Set Associative

- Set associative cache is a compromise between fully associative and direct mapped caching techniques
- The idea is to break apart the cache into *n*-sets of cache lines. This way the cache subsystem uses a direct mapped scheme to select a set, but then uses a fully associative scheme to places the line entry in any of the *n* cache lines within the set
- For n = 2, the cache subsystem is called a two-way set associative cache

Cache Line Addressing

- But how are cache lines addressed?
- Caches include an address tag on each
 - line which gives it the frame address
 First, the tag of every cache line is checked in parallel to see if it matches the address provided by the CPU
 - Then there must be a way to identify which cache line is invalid, which is done through adding a valid bit to the tag line
 - Finally, a random or a Least Recently Used (LRU) algorithm can be used to evict an invalid cache line

Cache Operation

- Most of the time the cache is busy filling cache lines (reading from memory)
- But the processor doesn't write a cache line which can be up to 128 bytes - it only writes between 1 and 8 bytes

- Therefore it must perform a read-modify-write sequence on the cache line
- Also, the cache uses one of two write operations:
 Write-through, where data is updated both on the cache and in the main memory
 - Write-back, where data is written to the cache, and updated in the main memory only when the cache line is replaced
- Cache coherency a very important subject! TBD in a separate lecture...

Static RAM

- Uses 4-6 transistors to store a single bit of data Provides a fast access time at the expense of lower bit densities
- For this reason registers and cache subsystems are fabricated using SRAM technology
- Static RAM is considerably more expensive than Dynamic RAM
- However, since it doesn't need to be refreshed, its power consumption is much lower than DRAM
- Also, the absence of the refresh circuitry makes it easier to interface to
- The simplicity of the memory circuitry compensates for the more costly technology

Dynamic RAM

- • The bulk of a processor's main memory is comprised of dynamic RAM
- Manufacturers have focused on memory sizes rather than speed
- In contrast to SRAM, DRAM uses a single transistor and capacitor to store a bit
- DRAM requires that the address applied to the device be asserted in a row address (RAS) and a column address (CAS)
- The requirement of RAS and CAS of course kills the access time, but since it reduces package pinout, it allows for higher memory densities

Dynamic RAM

- RAS and CAS use the same pins, with each being asserted during either the RAS or the CAS phase of the address
- There are two metrics used to describe DRAM's performance:
- Access time is defined as the time between
- assertion of RAS to the availability of data
- Cycle time is defined as the minimum time before a next access can be granted
- Manufacturers like to quote access times, but cycle times are more relevant because they establish throughput of the system

- Of course the charge leaks slowly from the storage capacitor in DRAM and it needs to be refreshed continually
- During the refresh phase, all accesses are *held-off*, which happens once every 1 100 ms and slightly impacts the throughput
- DRAM bandwidth can be increased by operating it in *paged mode*, when several CASs are applied for each RAS
- A notation such as 256x16 means 256 thousand columns of cells standing 16 rows deep

Memory Timing

- Command Rate the delay between Chip Select (CS), or when an IC is selected and the time commands can be issued to the IC
- Latency The time from when a request is made to when it is answered; the total time required before data can be written to or read from the memory.
- Memory timing can be displayed as a sequence of numbers such as 2-3-2-6-T1
 - While all parameters are important to system
 reliability, some parameters are more significant:

 - This refers to the CL-tRCD-tRP-tRAS-Command Rate sequence and is measured in clock cycles

Memory Timing CAS Latency

- - One of the most important parameters
 - Delay between the CAS signal and the availability of the data on the DQ pin
 - Specially important since data is often accessed sequentially (within the same row), so CAS timing plays a key role in the performance of a system
- tRCD
 - · The delay between the time a row is activated, to
 - when a column is activated
 - For most situations (sequential), it is not a problem, however becomes an issue for non-sequential addressing

_							
\cap	oldEiro CDD AI	ΝЛ		Γ	mina		
U	DIULTIC SDRAI	VI.			mmg		
					secure C	7" 7" 7	
-8						(101)-+ +	
- 1					SEMERATO O	, co , j	Car () Car () Car () Car
_						ford-s in	-
- 1				_	US,RECHS	0	
Name	Characteristic 1		Mark 1	Unit			-
		Min	Max		SCBA(1 Q		
	Control Inputs			_		0	-
4D1	SDCLK to address output A(22.0) valid	-	8.5	+5	1000	r	
902	SDCLK to address output A[22 0] invalid (output hold)	1	-	L		-	
603	SDCLK to DQM[2:0] valid	-		=5			Q @••
104	SDCLK to DQM[3:0] evalue (output hold)	2	-	_	8433		
105	SDCLK to data oxfput (D()1.9() valid (signal from driven or three-state)	-		+5		0.00	e)
906	SDCLK to-date output (D(31.0)) event (output hold)	•	-			60.7	
SD7	SDCLK to CASO, RASO, SDBA(10], SDCLKE, SDRAMWE, valid	-	7	+5	0.00	1 Mar	
106	SDCLX to CASO, RASE, SDBA(10), SDCLXE, SDRAMWE, invalid (output hold)	1	-		- + - (e)		
109	SDCLK to SDCS valid	-		+5	secore		
40/10	SDCLX to SDCS evalue (output hold)	1.5	-				-
	SDCLK to A10_PRE CHG valid	-	9.5		SEWE CON		
	SDCLK to A10_PRECHG invalid (output held)	2	-			N 1 4 F	
5012				1.65			
5012 5013	SDCLK to data output (D(31.0) high impedance			-			(101) (101)-+
5012 5013 5014	SDCLK to date output (D(31.0) high impediance Date input (D(31.0) valid to SDCLK (settip) (ppeline mode, SDRAM control register 14 + 1)	2.5	-	=5	DOW		(ii) (iii)
9012 9013 9014 9015	SIDCLK Ne data output (SC10 (b) trigh regelaprice Data Input (SC11 (b) valid to SIDCLK (behip) gapeline mode, SIDRAM control regelate 14 + 1) Data Input (SC11 (b) valid to SIDCLK (behip) citrarght through mode, SIDRAM control regelate 14 + 0).	2.5	-	15 15	DOMN GADA IN	6	

The Control Bus

The following are generally part of the Control Bus:

- Read/Write signal, which specify the direction of data flow
- Byte Enable signals, which allow 16, 32, and 64 bit busses deal with smaller chunks of data
- Some processors have signaling which
 identifies between memory and I/O addresses
- Other signals include interrupt lines, parity lines, bus clock, and status signals

The ColdFire Syste	m B	us	
 OE# controls external bus transceivers 			
TA# indicates successful	Signal Name	Description	10
a simulation of some stad	A[22:0]	Address bus	0
completion of requested	BS[3.0]	Byte strobes	0
data transfer	CS[7:0]	Chip selects	0
TEA# upon accortion	D[31:0]	Data bus	10
 TEA# upon assertion 	INT[6:1]	Interrupt request	1
terminates the bus cycle	Signal Name	Description	80
	ÖE	Output enable	0
	RW	Read/write	0
	TA	Transfer acknowledge	1
	TEA	Transfer error acknowledge	1

